Asymptotic properties of fourth-order nonlinear difference equations
نویسندگان
چکیده
منابع مشابه
Oscillatory Properties of Fourth Order Nonlinear Difference Equations with Quasidifferences
In this paper we present the oscillation criterion for a class of fourth order nonlinear difference equations with quasidifferences.
متن کاملOscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations
where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...
متن کاملSolvability of Nonlinear Difference Equations of Fourth Order
In this article we show the existence of solutions to the nonlinear difference equation xn = xn−3xn−4 xn−1(an + bnxn−2xn−3xn−4) , n ∈ N0, where the sequences (an)n∈N0 and (bn)n∈N0 , and initial the values x−j , j = 1, 4, are real numbers. Also we find the set of initial values for which solutions are undefinable when an 6= 0 and bn 6= 0 for every n ∈ N0. When these two sequences are constant, w...
متن کاملOn a Class of Fourth-order Nonlinear Difference Equations
We consider a class of fourth-order nonlinear difference equations. The classification of nonoscillatory solutions is given. Next, we divide the set of solutions of these equations into two types: F+and F−-solutions. Relations between these types of solutions and their nonoscillatory behavior are obtained. Necessary and sufficient conditions are obtained for the difference equation to admit the...
متن کاملAsymptotic problems for fourth-order nonlinear differential equations
By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on [Tx,∞). A solution is said to be nonoscillatory if x(t) = for large t; otherwise, it is said to be oscillatory. Observe that if λ≥ , according to [, Theorem .], all nontrivial solutions of () satisfy sup{|x(t)| : t ≥ T} > for T ≥ Tx, on the contrary to the case λ < , when nontrivial solutions satisfy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2004
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2004.06.002