Asymptotic properties of fourth-order nonlinear difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory Properties of Fourth Order Nonlinear Difference Equations with Quasidifferences

In this paper we present the oscillation criterion for a class of fourth order nonlinear difference equations with quasidifferences.

متن کامل

Oscillatory and Asymptotic Behavior of Fourth order Quasilinear Difference Equations

where ∆ is the forward difference operator defined by ∆xn = xn+1 −xn, α and β are positive constants, {pn} and {qn} are positive real sequences defined for all n ∈ N(n0) = {n0, n0 + 1, ...}, and n0 a nonnegative integer. By a solution of equation (1), we mean a real sequence {xn} that satisfies equation (1) for all n ∈ N(n0). If any four consecutive values of {xn} are given, then a solution {xn...

متن کامل

Solvability of Nonlinear Difference Equations of Fourth Order

In this article we show the existence of solutions to the nonlinear difference equation xn = xn−3xn−4 xn−1(an + bnxn−2xn−3xn−4) , n ∈ N0, where the sequences (an)n∈N0 and (bn)n∈N0 , and initial the values x−j , j = 1, 4, are real numbers. Also we find the set of initial values for which solutions are undefinable when an 6= 0 and bn 6= 0 for every n ∈ N0. When these two sequences are constant, w...

متن کامل

On a Class of Fourth-order Nonlinear Difference Equations

We consider a class of fourth-order nonlinear difference equations. The classification of nonoscillatory solutions is given. Next, we divide the set of solutions of these equations into two types: F+and F−-solutions. Relations between these types of solutions and their nonoscillatory behavior are obtained. Necessary and sufficient conditions are obtained for the difference equation to admit the...

متن کامل

Asymptotic problems for fourth-order nonlinear differential equations

By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on [Tx,∞). A solution is said to be nonoscillatory if x(t) =  for large t; otherwise, it is said to be oscillatory. Observe that if λ≥ , according to [, Theorem .], all nontrivial solutions of () satisfy sup{|x(t)| : t ≥ T} >  for T ≥ Tx, on the contrary to the case λ < , when nontrivial solutions satisfy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2004

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2004.06.002